§ A walkway of lanterns (TODO)
§ Semidirect products
- (α≡{a,b,…},+,0)
- (ω≡{X,Y,…},×,1)
- ⋅ : ω→Automorphisms(α)
- rotations: Z5
- reflection: Z2
- D5=Z5⋊Z2
[1a0X][1b0Y]=[1a+X⋅b0XY]
- (Y↦b)act(X↦a)
- XY↦a+X⋅b
§ A walkway of lanterns
- Imagine Z as a long walkway. you start at 0. You are but a poor lamp lighter.
- Where are the lamps? At each i∈Z, you have a lamp that is either on, or off. So you have Z2.
- L≡Z→Z2 is our space of lanterns. You can act on this space by either moving using Z, or toggling a lamp using Z2. Z2Z⋊Z
- g=(lights:⟨−1,0,1⟩,loc:10)
- move3:(lights:⟨⟩,loc:3)
- move3⋅g=(lights:⟨−1,0,1⟩,loc:13)
- togglex=(lights:⟨0,2⟩,loc:0)
- togglex⋅g=(lights:⟨−1,0,1,13,15⟩,loc:13)
- toggley=(lights:⟨−13,−12⟩,loc:0)
- toggley⋅g=(lights:⟨−1⟩,loc:13)