§ Bezout's theorem

§ Intersection multiplicity i[fg](a)i[f \cap g](a)

§ f(a)0f(a) \neq 0 or g(a)0g(a) \neq 0 implies i[fg](a)0i[f \cap g](a) \equiv 0

§ f(a)=0f(a) = 0 and g(a)=0g(a) = 0 implies i[fg](a)0i[f \cap g](a) \neq 0.

§ Examples

§ Intersection cycle ( fgf \cap g)

§ Intersection number #(fg)\#(f \cap g)

§ Lemma: fg=gff \cap g = g \cap f

§ Lemma: f(g+fh)=fgf \cap (g + fh) = f \cap g

§ fghfg+fhf \cap gh \equiv f \cap g + f \cap h

§ Lemma: if f,gf, g are nonconstant and linear then #(fg)=1\#(f \cap g) = 1.

§ Lemma: homogeneous polynomial gk[p,q]g \in k[p, q] factorizes as α0pti=1nt(pαiq)\alpha_0 p^t \prod_{i=1}{n-t}(p - \alpha_i q): α00\alpha_0 \neq 0 and t>0t > 0

§ Lemma: homogeneous polynomial gk[p,q]g \in k[p, q] factorizes as α0qti=1nt(pαiq)\alpha_0 q^t \prod_{i=1}{n-t}(p - \alpha_i q) with t>0t > 0.

§ Lemma: fk[x,y,z]f \in k[x, y, z] and g[y,z]g \in [y, z] homogeneous have def(f)deg(g)def(f) deg(g) number of solutions

§ Solving for i[f(x,y,z)z]i[f(x, y, z) \cap z]

§ Solving for i[f(x,y,z)(yαiz)]i[f(x, y, z) \cap (y - \alpha_i z)]

§ Inductive step

fg=() f \cap g = ()