§ Christoffel symbols, geometrically
Suppose we have a manifold M M M . of dimension d d d that has been embedded isometrically
into R n \mathbb R^n R n . So we have a function e : R d → R n e: \mathbb R^d \rightarrow \mathbb R^n e : R d → R n
which is the embedding. We will identify M M M to be the subspace I m ( e ) Im(e) I m ( e ) .
Recall that ∂ x i e : R d → R n \partial_{x_i} e : \mathbb R^d \rightarrow \mathbb R^n ∂ x i e : R d → R n
is defined as:
∂ x i e : R d → R n [ ∂ x i e ] ( p ) ≡ lim δ x → 0 e ( p + ( x 0 = 0 , x 1 = 0 … , x i = δ x , … , x n = 0 ) ) − e ( p ) δ x
\begin{aligned}
&\partial_{x_i}e : \mathbb R^d \rightarrow \mathbb R^n \\
&[\partial {x_i}e](p) \equiv
\lim_{\delta x \rightarrow 0} \frac{e(p + (x_0=0, x_1=0\dots, x_i=\delta_x, \dots, x_n=0)) - e(p)}{\delta x}
\end{aligned}
∂ x i e : R d → R n [ ∂ x i e ] ( p ) ≡ δ x → 0 lim δ x e ( p + ( x 0 = 0 , x 1 = 0 … , x i = δ x , … , x n = 0 ) ) − e ( p )
Note that it is a function of type R d → R n \mathbb R^d \rightarrow \mathbb R^n R d → R n .
The tangent space at point p ∈ I m a g e ( e ) p \in Image(e) p ∈ I m a g e ( e ) is going to be spanned by the basis { ∂ x i e ∣ p : R n } \{ \partial_{x_i}e \vert_p : \mathbb R^n \} { ∂ x i e ∣ p : R n } . The metric tensor of M M M , g i j ≡ ⟨ ∂ e ∂ x i ∣ ∂ e ∂ x j ⟩ g_{ij} \equiv \langle \frac{\partial e}{\partial x_i} \vert \frac{\partial e}{\partial x_j} \rangle g i j ≡ ⟨ ∂ x i ∂ e ∣ ∂ x j ∂ e ⟩ . That is, the metric tensor "agrees" with the dot product of the ambient space R n \mathbb R^n R n . A vector field V V V on the manifold M M M is by definition a combination of the tangent vector fields. V ( p 0 ) ≡ v j ( p 0 ) ∂ x j e ( p 0 ) V(p_0) \equiv v^j(p_0) \partial_{x_j} e(p_0) V ( p 0 ) ≡ v j ( p 0 ) ∂ x j e ( p 0 )
We can calculate the derivaive of this vector field as follows:
V ( p ) ∂ x i = ∂ x i [ v j ( p ) ∂ x j e ] = v j ⋅ ∂ x i ∂ x j e + ∂ x j e ⋅ ∂ x i v j
\begin{aligned}
&\frac{V(p)}{\partial x^i} = \partial_{x_i} \left[ v^j(p) \partial_{x_j} e \right] \\
&= v^j \cdot \partial_{x_i} \partial_{x_j} e + \partial_{x_j}e \cdot \partial_{x_i} v^j
\end{aligned}
∂ x i V ( p ) = ∂ x i [ v j ( p ) ∂ x j e ] = v j ⋅ ∂ x i ∂ x j e + ∂ x j e ⋅ ∂ x i v j
We choose to rewrite the second degree term in terms of the tangent
space, and some component that is normal to us that we have no
control over.
( ∂ x i ∂ x j e ) ( p ) ≡ Γ i j k ∂ x k e + n ⃗
(\partial_{x_i} \partial_{x_j} e )(p) \equiv \Gamma^k_{ij} \partial_{x_k} e + \vec{n}
( ∂ x i ∂ x j e ) ( p ) ≡ Γ i j k ∂ x k e + n
This gives us the Christoffel symbols as "variation of second derivative along
the manifold.
§ Relationship to the Levi-Cevita connection
The covariant derivative defined by the Levi-Cevita connection is the derivative
that contains the projection of the full derivative in R n \mathbb R^n R n onto
the tangent space T p M T_p M T p M . This is defined by the equations:
∇ e i V ≡ ∂ x i V − n ⃗ = Π n ⃗ ⊥ [ v j ⋅ ∂ x i ∂ x j e + ∂ x j e ⋅ ∂ x i v j ] = Π n ⃗ ⊥ [ v j ⋅ ( Γ i j k ∂ x k e + n ⃗ ) + ∂ x j e ⋅ ∂ x i v j ] = v j ⋅ ( Γ i j k ∂ x k e + 0 ⃗ ) + ∂ x j e ⋅ ∂ x i v j = v j ⋅ ( Γ i j k ∂ x k e + 0 ⃗ ) + ∂ x k e ⋅ ∂ x i v k = v j ⋅ Γ i j k ∂ x k e + ∂ x k e ⋅ ∂ x i v k = ∂ x k e ( v j ⋅ Γ i j k + ∂ x i v k )
\begin{aligned}
&\nabla_{e_i} V \equiv \partial_{x_i} V - \vec{n} \\
&= \Pi_{\vec{n}^\bot} \left [v^j \cdot \partial_{x_i} \partial_{x_j} e + \partial_{x_j}e \cdot \partial_{x_i} v^j \right] \\
&= \Pi_{\vec{n}^\bot} \left[ v^j \cdot (\Gamma^k_{ij} \partial_{x_k} e + \vec{n})+ \partial_{x_j}e \cdot \partial_{x_i} v^j \right] \\
&= v^j \cdot (\Gamma^k_{ij} \partial_{x_k} e + \vec 0) + \partial_{x_j}e \cdot \partial_{x_i} v^j \\
&= v^j \cdot (\Gamma^k_{ij} \partial_{x_k} e + \vec 0) + \partial_{x_k}e \cdot \partial_{x_i} v^k \\
&= v^j \cdot \Gamma^k_{ij} \partial_{x_k} e + \partial_{x_k}e \cdot \partial_{x_i} v^k \\
&= \partial_{x_k} e \left( v^j \cdot \Gamma^k_{ij} + \partial_{x_i} v^k \right) \\
\end{aligned}
∇ e i V ≡ ∂ x i V − n = Π n ⊥ [ v j ⋅ ∂ x i ∂ x j e + ∂ x j e ⋅ ∂ x i v j ] = Π n ⊥ [ v j ⋅ ( Γ i j k ∂ x k e + n ) + ∂ x j e ⋅ ∂ x i v j ] = v j ⋅ ( Γ i j k ∂ x k e + 0 ) + ∂ x j e ⋅ ∂ x i v j = v j ⋅ ( Γ i j k ∂ x k e + 0 ) + ∂ x k e ⋅ ∂ x i v k = v j ⋅ Γ i j k ∂ x k e + ∂ x k e ⋅ ∂ x i v k = ∂ x k e ( v j ⋅ Γ i j k + ∂ x i v k )
§ References