§ Elementary and power sum symmetric polynomials

§ Speedy proof when k=nk = n / no. of vars equals largest kk (of e[k]e[k]) we are expanding:

j=1kP(r[j])=j0=0jie[ni]r[j]i=0jie[ni]r[j]i=0je[n]1+ji>0ke[n1]r[j]i=0ke[n]+i=1ke[i]P[ni]=0 \begin{aligned} &\sum_{j=1}^k P(r[j]) = \sum_j 0 = 0\\ &\sum_j \sum_i e[n-i] r[j]^{i} = 0 \\ &\sum_j \sum_i e[n-i] r[j]^{i} = 0 \\ &\sum_j e[n] \cdot 1 + \sum_j \sum_{i>0}^k e[n-1] r[j]^i = 0 \\ k e[n] + &\sum_{i=1}^k e[i] P[n-i] = 0 \end{aligned}

§ Concretely worked out in the case where n=k=4n = k = 4:

P(x)=1x4+e1x3+e2x2+e3x+e4roots: r1,r2,r3,r4P(x)=(xr1)(xr2)(xr3)(xr4)e0=1e1=r1+r2+r3+r4e2=r1r2+r1r3+r1r4+r2r3+r2r4+r3r4e3=r1r2r3+r1r2r4+r2r3r4e4=r1r2r3r4 \begin{aligned} &P(x) = 1 \cdot x^4 + e_1 x^3 + e_2 x^2 + e_3 x + e_4 \\ &\texttt{roots: } r_1, r_2, r_3, r_4\\ &P(x) = (x - r_1)(x - r_2)(x - r_3)(x - r_4)\\ &e_0 = 1 \\ &e_1 = r_1 + r_2 + r_3 + r_4 \\ &e_2 = r_1r_2 + r_1r_3 + r_1r_4 + r_2r_3 + r_2r_4 + r_3r_4 \\ &e_3 = r_1r_2r_3 + r_1r_2r_4 + r_2r_3r_4 \\ &e_4 = r_1r_2r_3r_4\\ \end{aligned}
P(r1)=r14+e1r13+e2r12+e3r1+e4=0P(r2)=r24+e1r23+e2r12+e3r1+e4=0P(r3)=r34+e1r33+e2r12+e3r1+e4=0P(r4)=r44+e1r43+e2r12+e3r1+e4=0 \begin{aligned} P(r_1) &= r_1^4 + e_1r_1^3 + e_2r_1^2 + e_3 r_1 + e_4 = 0 \\ P(r_2) &= r_2^4 + e_1r_2^3 + e_2r_1^2 + e_3 r_1 + e_4 = 0 \\ P(r_3) &= r_3^4 + e_1r_3^3 + e_2r_1^2 + e_3 r_1 + e_4 = 0 \\ P(r_4) &= r_4^4 + e_1r_4^3 + e_2r_1^2 + e_3 r_1 + e_4 = 0 \\ \end{aligned}
P(r1)+P(r2)+P(r3)+P(r4)=(r14+r24+r34+r44)+e1(r13+r23+r33+r23)+e2(r12+r22+r32+r42)+e3(r1+r2+r3+r4)+4e4=1P4e1P3+e2P2+e3P1+4e4=e0P4+e1P3+e2P2+e3P1+4e4=0 \begin{aligned} &P(r_1) + P(r_2) + P(r_3) + P(r_4) \\ &=(r_1^4 + r_2^4 + r_3^4 + r_4^4) &+ e_1(r_1^3 + r_2^3 + r_3^3 + r_2^3) &+ e_2(r_1^2 + r_2^2 + r_3^2 + r_4^2) &+ e_3(r_1 + r_2 + r_3 + r_4) &+ 4 e_4 \\ &= 1 \cdot P_4 e_1 P_3 + e_2 P_2 + e_3 P_1 + 4 e_4 \\ &= e_0 P_4 + e_1 P_3 + e_2 P_2 + e_3 P_1 + 4 e_4 \\ &= 0 \\ \end{aligned}

§ When k>nk > n (where nn is number of variables):

§ When k<nk < n (where nn is number of variables):

§ Proof by cute notation

In general, we will find:
(k1)(1)=(k)+(k1,1)(k2)(1,1)=(k1,1)+(k2,1,1)(k3)(1,1,1)=(k2,1,1)+(k3,1,1,1)(k4)(1,1,1,1)=(k3,1,1,1)+(k4,1,1,1,1) (k-1)(1) = (k) + (k-1, 1) \\ (k-2)(1, 1) = (k-1, 1) + (k-2, 1, 1) \\ (k-3)(1, 1, 1) = (k-2, 1, 1) + (k-3, 1, 1, 1) \\ (k-4)(1, 1, 1, 1) = (k-3, 1, 1, 1) + (k-4, 1, 1, 1, 1) \\
(k-i)(replicate 1 i) = (k-i+1, replicate 1 [i-1]) + (k-i , replicate 1 i)