§ Lagrange multipliers by algebra

§ Constrained optimisataion: the first stab

We want to maximize z=f(x,y)z = f(x, y) given the constraint that g(x,y)=0g(x, y) = 0. Let us arbitrarily say that xx is independent and yy is dependent on xx, so there is some function tt such that y=t(x)y = t(x). This lets us compute dy/dxdy/dx using:
g(x,y)=0dg(x,y)dx=d0=0gx+gydydx=0dydx=g/xg/y \begin{aligned} & g(x, y) = 0\\ &\frac{d g(x, y)}{dx} = d0 = 0\\ &\frac{\partial g}{\partial x} + \frac{\partial g}{\partial y}\frac{dy}{dx} = 0 \\ &\frac{dy}{dx} = - \frac{\partial g/\partial x}{\partial g/\partial y} \end{aligned}
Next, since zz is a function of xx alone (as yy is dependent on xx via tt), the condition dz/dx=0dz/dx = 0 guarantees a maxima for zz:
dzdx=0fx+fydydx=0fx+fyg/xg/y=0 \begin{aligned} &\frac{dz}{dx} = 0 \\ &\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}\frac{dy}{dx} = 0 \\ &\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial g/\partial x}{\partial g/\partial y} = 0 \\ \end{aligned}
Solving the above condition along with g(x,y)=0g(x, y) = 0 to recover the value of yy gives us the optima.

§ Constrained optimisataion: equal footing

F(x,y,λ)=f(x,y)+λg(x,y) F(x, y, \lambda) = f(x,y) + \lambda g(x, y)
If we consider the stationary value of FF, we get:
Fx=fx+λgx=0Fy=fy+λgy=0Fλ=fx+λgx \begin{aligned} &\frac{\partial F}{\partial x} = \frac{\partial f}{\partial x} + \lambda \frac{\partial g}{\partial x} = 0 \\ &\frac{\partial F}{\partial y} = \frac{\partial f}{\partial y} + \lambda \frac{\partial g}{\partial y} = 0 \\ &\frac{\partial F}{\partial \lambda} = \frac{\partial f}{\partial x} + \lambda \frac{\partial g}{\partial x} \end{aligned}
to eliminate λ\lambda from the above equations, we rearrange:
fx/gx=λfy/gy=λ \begin{aligned} &\frac{\partial f}{\partial x}/\frac{\partial g}{\partial x} = \lambda\\ &\frac{\partial f}{\partial y}/\frac{\partial g}{\partial y} = \lambda \\ \end{aligned}
This λ\lambda can be eliminated to recover the previous equation:
fx/gx=fy/gyfx=gxfy/gyfxgxfy)/gy=0 \begin{aligned} &\frac{\partial f}{\partial x}/\frac{\partial g}{\partial x} = &\frac{\partial f}{\partial y}/\frac{\partial g}{\partial y} \\ &\frac{\partial f}{\partial x} = \frac{\partial g}{\partial x} \frac{\partial f}{\partial y}/\frac{\partial g}{\partial y} \\ &\frac{\partial f}{\partial x} - \frac{\partial g}{\partial x} \frac{\partial f}{\partial y})/\frac{\partial g}{\partial y} = 0 \\ \end{aligned}
The langrange multipler procedure is nice since it does not break the symmetry between the two variables.