§ Operations with modular fractions

\begin{aligned} &\phi(a/b + c/d) \\ &=\phi((ad + bc)/bd) \\ &= (ad + bc)(bd)^{-1}\\ &= abb^{-1}d^{-1} + bcb^{-1}d^{-1} \\ &= ad^{-1} + cd^{-1} \\ &= \phi{a/d} + \phi{c/d} \\ \end{aligned}
  • For multiplication, we wish to show that ϕ(a/bc/d)=ϕ(a/b)ϕ(c/d)\phi(a/b \cdot c/d) = \phi(a/b) \cdot \phi(c/d):
\begin{aligned} &\phi(a/b \cdot c/d) \\ &=\phi{ac/bd} &= ac(bd)^{-1} \\ &= acd^{-1}b^{-1} \\ &= ab^{-1} \cdot cd^{-1} \\ &= \phi{a/b} \cdot \phi{c/d} \\ \end{aligned}
  • For inverse, we wish to show that ϕ(1/(a/b))=ϕ(a/b)1\phi(1/(a/b)) = \phi(a/b)^{-1}:
\begin{aligned} &\phi(1/(a/b)) &=\phi{b/a} &= ba^{-1} &= (ab^{-1})^{-1} &= \phi(a/b)^{-1} \end{aligned} Thus, we can simply represent terms a/ba/b in terms of ab1ab^{-1} and perform arithmetic as usual.