e: a -> b
and m: x -> y
are orthogonal iff for any (f, g)
such
that the square commutes:
a --e--> b
| |
f g
| |
v v
x --m--> y
then there exists a UNIQUE diagonal d: b -> x
such that the the triangles
commute: ( f = d . e
) and ( m . d = g
):
a --e--> b
| / |
f / g
| /!d |
v / v
x --m--> y