§ Presheaf models of type theory
- Let C be any category.
- Contexts are presheaves Γ:Cop→Set. Morphisms are natural transformations of presheaves.
- an element of a context Elem(Γ) is a global element / grothendieck construction / object in the category of elements of contexts: ΣI:Ob(C)Γ(I)
- A type in the context, Γ⊢T is a presheaf over the category of elements α∈T(I,ρ).
- A term Γ⊢t:T is t:(I:Ob(C))−>(ρ:Γ(I))−>T(I,ρ).
- substitution is a natural transformation σ:Γ→Δ.