§ Clean way to write burnside lemma


Burnside lemma says that Orb(G)1/GgGfix(g)|Orb(G)| \equiv 1/|G| \sum_{g \in G} fix(g). We prove this as follows:
gGfix(g)=gG{x:g(x)=x}={(g,x):g(x)=x}=xX{x:g(x)=x}=xXStab(x) \begin{aligned} &\sum_{g \in G} fix(g) \\ &= \sum_{g \in G} |\{x : g(x) = x \}| \\ &= |\{(g, x) : g(x) = x \}| \\ &= \sum_{x \in X}|\{x : g(x) = x \}| \\ &= \sum_{x \in X} Stab(x) \end{aligned}


=xXStab(x)=xXG/Orb(x)=Goorbitsxo1/o=Gnum.orbits \begin{aligned} &= \sum_{x \in X} Stab(x) \\ &= \sum_{x \in X} |G|/|Orb(x)| \\ &= |G| \sum_{o \in orbits} \sum_{x \in o} 1/|o| \\ &= |G| \texttt{num.orbits} \\ \end{aligned}

So we have derived:
gGfix(g)=Gnum.orbits1/G(gGfix(g))=num.orbits \begin{aligned} &\sum_{g \in G} fix(g) = |G| \texttt{num.orbits} \\ &1/|G| (\sum_{g \in G} fix(g)) = \texttt{num.orbits} \\ \end{aligned}

If we have a transformation that fixes many things, ie, fix(g)fix(g) is large,
then this gg is not helping "fuse" orbits of xx together, so the number of
orbits will increase.