§ Concrete description of spinors



[cosθ/2isinθ/2isinθ/2cosθ/2][zxyix+yiz][cosθ/2isinθ/2isinθ/2cosθ/2] \begin{bmatrix} \cos \theta/2 & i \sin \theta/2 \\ i \sin \theta/2 & \cos \theta/2 \end{bmatrix} \begin{bmatrix} z & x - yi \\ x+yi & -z \end{bmatrix} \begin{bmatrix} \cos \theta/2 & i \sin \theta/2 \\ i \sin \theta/2 & \cos \theta/2 \end{bmatrix}^\dagger


[cosθ/2isinθ/2isinθ/2cosθ/2][s1s2][s2s1][cosθ/2isinθ/2isinθ/2cosθ/2] \begin{bmatrix} \cos \theta/2 & i \sin \theta/2 \\ i \sin \theta/2 & \cos \theta/2 \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} \begin{bmatrix} -s_2 & s_1 \end{bmatrix} \begin{bmatrix} \cos \theta/2 & i \sin \theta/2 \\ i \sin \theta/2 & \cos \theta/2 \end{bmatrix}^\dagger


§ Clifford algebras



§ References



§ Spinorial tensors