§ Cycle index polynomial
If σ ∈ S n \sigma \in S_n σ ∈ S n let c y c ( σ ) cyc(\sigma) c y c ( σ ) be the integer partition of n n n giving cycle lengths. For example, if σ = ( 12 ) ( 3 ) ( 456 ) ( 78 ) \sigma = (1 2)(3)(4 5 6)(7 8) σ = ( 1 2 ) ( 3 ) ( 4 5 6 ) ( 7 8 ) , then c y c ( σ ) = 3 + 2 + 2 + 1 ∼ ( 3 , 2 , 2 , 1 ) cyc(\sigma) = 3 + 2 + 2 + 1 \sim (3, 2, 2, 1) c y c ( σ ) = 3 + 2 + 2 + 1 ∼ ( 3 , 2 , 2 , 1 ) . Recall that an integer partition λ \lambda λ of n n n is a tuple λ [ : ] \lambda[:] λ [ : ] such that ∑ i λ [ i ] = n \sum_i \lambda[i] = n ∑ i λ [ i ] = n and λ \lambda λ is non-increasing. The cycle index polynomial for a group G ⊆ S n G \subseteq S_n G ⊆ S n is Z ( G ) ≡ 1 / ∣ G ∣ ∑ g ∈ G P [ c y c ( g ) ] Z(G) \equiv 1/|G| \sum_{g \in G} P[cyc(g)] Z ( G ) ≡ 1 / ∣ G ∣ ∑ g ∈ G P [ c y c ( g ) ] where P [ ⋅ ] P[\cdot] P [ ⋅ ] is the power sum symmetric polynomial for the cycle-type partition c y c ( g ) cyc(g) c y c ( g ) . Recall the definition of power sum symmetric polynomial. First, for a natural number k ∈ N k \in \mathbb N k ∈ N , we define P [ k ] ( x ⃗ ) ≡ x 1 k + x 2 k + ⋯ + x n k P[k](\vec x) \equiv x_1^k + x_2^k + \dots + x_n^k P [ k ] ( x ) ≡ x 1 k + x 2 k + ⋯ + x n k . Next, for a partition λ \lambda λ , we define P [ λ ] ( x ⃗ ) P[\lambda](\vec x) P [ λ ] ( x ) to be the product over the parts of the partition: P [ λ 1 ] ( x ⃗ ) ⋅ P [ λ 2 ] ( x ⃗ ) ⋅ ⋯ ⋅ P [ λ l ] ( x ⃗ ) P[\lambda_1](\vec x) \cdot P[\lambda_2](\vec x) \cdot \dots \cdot P[\lambda_l](\vec x) P [ λ 1 ] ( x ) ⋅ P [ λ 2 ] ( x ) ⋅ ⋯ ⋅ P [ λ l ] ( x ) .
§ Cycle index polynomial of dihedral group
For example, consider the dihedral group D 4 D_4 D 4 acting on a square with vertices a , b , c , d a, b, c, d a , b , c , d : More formally, the dihedral group D 4 D_4 D 4 acts on the set of labelled squares X X X .
a b
d c
1. For the identity e e e , the cycle is ( a ) ( b ) ( c ) ( d ) (a)(b)(c)(d) ( a ) ( b ) ( c ) ( d ) . The cycle partition is ( 1 , 1 , 1 , 1 ) (1, 1, 1, 1) ( 1 , 1 , 1 , 1 ) . 2. For the rotation r r r , the cycle is ( a b c d ) (a b c d) ( a b c d ) . The cycle partition is ( 4 ) (4) ( 4 ) . 3. For the rotation r 2 r^2 r 2 , the cycle is ( a c ) ( b d ) (a c)(b d) ( a c ) ( b d ) . The cycle partition is ( 2 , 2 ) (2, 2) ( 2 , 2 ) . 4. For the rotation r 3 r^3 r 3 , the cycle is ( a c b d ) (a c b d) ( a c b d ) . The partition is ( 4 ) (4) ( 4 ) . 5. For the horizontal swap h h h , the cycle is ( a d ) ( b c ) (a d)(b c) ( a d ) ( b c ) . The cycle partition is ( 2 , 2 ) (2, 2) ( 2 , 2 ) . 6. For the vertical swap v v v , the cycle is ( a b ) ( c d ) (a b)(c d) ( a b ) ( c d ) . The cycle partition is ( 2 , 2 ) (2, 2) ( 2 , 2 ) . 7. For the diagonal a-c
swap a c ac a c , the cycle is ( b d ) ( a ) ( c ) (b d)(a)(c) ( b d ) ( a ) ( c ) . The cycle partition is ( 2 , 1 , 1 ) (2, 1, 1) ( 2 , 1 , 1 ) . 8. For the diagonal b-d
swap b d bd b d , the cycle is ( a b ) ( c ) ( d ) (a b)(c)(d) ( a b ) ( c ) ( d ) . The cycle partitionis ( 2 , 1 , 1 ) (2, 1, 1) ( 2 , 1 , 1 ) .
The cycle index polynomial is Z ( D 4 , X ) ≡ 1 / ∣ D 4 ∣ ( P [ ( 1 , 1 , 1 , 1 ) ] + 2 P [ 2 , 1 , 1 ] + 3 P [ 2 , 2 ] + P [ 4 ] ) Z(D_4, X) \equiv 1/|D_4|(P[(1, 1, 1, 1)] + 2P[2, 1, 1] + 3P[2, 2] + P[4]) Z ( D 4 , X ) ≡ 1 / ∣ D 4 ∣ ( P [ ( 1 , 1 , 1 , 1 ) ] + 2 P [ 2 , 1 , 1 ] + 3 P [ 2 , 2 ] + P [ 4 ] ) .
P [ 1 , 1 , 1 , 1 ] = p 1 4 = ( x 1 + x 2 + x 3 + ⋯ + x n ) 4 P[1, 1, 1, 1] = p_1^4 = (x_1 + x_2 + x_3 + \dots + x_n)^4 P [ 1 , 1 , 1 , 1 ] = p 1 4 = ( x 1 + x 2 + x 3 + ⋯ + x n ) 4 , where p 1 p_1 p 1 is a power sum symmetric polynomial . P [ 2 , 1 , 1 ] = p 2 p 1 p 1 = ( x 1 2 + x 2 2 + ⋯ + x n 2 ) ⋅ ( x 1 1 + x 2 1 + ⋯ + x + n ) 2 P[2, 1, 1] = p_2 p_1 p_1 = (x_1^2 + x_2^2 + \dots+ x_n^2)\cdot (x_1^1 + x_2^1 + \dots + x+n)^2 P [ 2 , 1 , 1 ] = p 2 p 1 p 1 = ( x 1 2 + x 2 2 + ⋯ + x n 2 ) ⋅ ( x 1 1 + x 2 1 + ⋯ + x + n ) 2 . ...and so on.