§ Distance between lines in nD



§ Subproblem: point-line distance in nD



α(olol)=0α((opαx)(opαx)=0only terms with α survive ααoαx+pαxαxoαx(p)αx(αx)=0α2αox+2pαx+α2xx=0α2αox+2αpx+α2xx=02ox+2px+2αxx=02(o+p+αx)x=02(o+l)x=02(lo)x=0(lo)x=0lox \begin{aligned} &\partial_\alpha (ol \cdot ol) = 0 \\ &\partial_\alpha ((o - p - \alpha x) \cdot (o - p - \alpha x) = 0 \\ &\text{only terms with $\alpha$ survive $\partial_\alpha$: } \\ &\partial_\alpha - o \cdot \alpha x + p \cdot \alpha x - \alpha x \cdot o - \alpha x \cdot (- p) - \alpha x \cdot (- \alpha x) = 0\\ &\partial_\alpha - 2 \alpha o \cdot x + 2 p \cdot \alpha x + \alpha^2 x \cdot x = 0\\ &\partial_\alpha - 2 \alpha o \cdot x + 2\alpha p \cdot x + \alpha^2 x \cdot x = 0 \\ &- 2 o \cdot x + 2 p \cdot x + 2 \alpha x \cdot x = 0 \\ &2 (- o + p + \alpha x) \cdot x = 0 \\ &2 (- o + l) \cdot x = 0 \\ &2 (\vec{lo}) \cdot x = 0 \\ &(\vec{lo}) \cdot x = 0 \\ &\vec{lo} \bot x \end{aligned}


§ Line-Line distance