§ How to prove noConfusion


Suppose we take a type
inductive Eg 
| A | B



-- path induction
def fun_functional (f : A → B) (x y : A) (EQ : x = y) : f x = f y := 
   Eq.recOn EQ (motive := fun k K_EQ_X => f x = f k) rfl


def false_elim (f : False) : α := False.rec f (motive := fun _ => α) 


abbrev Eg.noConfusionType' (x y : Eg) : Prop := 
  x.casesOn (motive := fun _ => Prop)
    (y.casesOn (motive := fun _ => Prop) True False)
    (y.casesOn (motive := fun _ => Prop) False True)


abbrev Eg.noConfusionType'_inhabitant_rfl : Eg.noConfusionType' x x :=  
   x.casesOn True.intro True.intro


abbrev Eg.def2 (x y : Eg) (NEQ: x ≠ y) (NC: Eg.noConfusionType' x y) : False :=  
  match H : x with 
  | .A => 
     match K : y with 
     | .A => NEQ rfl 
     | .B => NC
  | .B => match K :  y with 
      | .A => NC 
      | .B => NEQ rfl


  Eg.rec (motive := fun x_1 =>
    ∀ (NEQ : x_1 ≠ y) (NC : Eg.noConfusionType' x_1 y), x = x_1 → (fun x NEQ NC => False) x_1 NEQ NC)
    (fun NEQ NC H =>
      Eg.rec (motive := fun x =>
        ∀ (NEQ : Eg.A ≠ x) (NC : Eg.noConfusionType' Eg.A x), y = x → (fun y NEQ NC => False) x NEQ NC)
        (fun NEQ NC K => NEQ (Eq.refl Eg.A)) (fun NEQ NC K => NC) y NEQ NC (Eq.refl y))
    (fun NEQ NC H =>
      Eg.rec (motive := fun x =>
        ∀ (NEQ : Eg.B ≠ x) (NC : Eg.noConfusionType' Eg.B x), y = x → (fun y NEQ NC => False) x NEQ NC)
        (fun NEQ NC K => NC) (fun NEQ NC K => NEQ (Eq.refl Eg.B)) y NEQ NC (Eq.refl y))
    x NEQ NC (Eq.refl x)