§ Inductive Predicate as Least Fixed Point, directly


inductive IsEven : Nat → Prop
| zero : IsEven 0
| succ : ∀ n, IsEven n → IsEven (n + 2)


def IsEvenProp (p : Nat → Prop) : Prop :=
  p 0 ∧ (∀ n, p n → p (n + 2))

theorem IsEvenPropOfIsEven : IsEvenProp IsEven := by
  unfold IsEvenProp
  constructor
  · exact IsEven.zero
  · intro n h
    exact IsEven.succ n h

/--
least fixed point of IsEvenProp.
See that this uses impredicativity.
It is quantifying over all (p : Nat → Prop).
In doing so, it is quantifying over *itself* (IsEven' : Nat → Prop).
-/
def IsEven' : Nat → Prop := fun n =>
  ∀ (p : Nat → Prop) (hp : IsEvenProp p), p n

theorem IsEven'_zero : IsEven' 0 := by
  intro p hp
  unfold IsEvenProp at hp
  obtain ⟨h0, _hsucc⟩ := hp
  exact h0

theorem IsEven'_ind (h : IsEven' n) : IsEven' (n + 2) := by
  intro p hp
  unfold IsEvenProp at hp
  obtain ⟨h0, hsucc⟩ := hp
  apply hsucc
  unfold IsEven' at h
  apply h
  unfold IsEvenProp
  simp only
  constructor <;> assumption


theorem IsEvenOfIsEven' : ∀ n, IsEven' n → IsEven n := by
  unfold IsEven'
  intros n
  intros h
  specialize h IsEven IsEvenPropOfIsEven
  exact h

theorem IsEven'OfIsEven : ∀ n, IsEven n → IsEven' n := by
  intro n
  intros h
  induction h
  case zero => exact IsEven'_zero
  case succ m heven heven' =>
    exact IsEven'_ind heven'

theorem IsEven_eq_IsEven' : ∀ n, IsEven n ↔ IsEven' n := by
  intro n
  apply Iff.intro
  · apply IsEven'OfIsEven
  · apply IsEvenOfIsEven'