§ Lie bracket commutator as infinitesimal conjugation



(e+ϵk)h(eϵk)=ehe+eh(ϵk)+ϵk)heϵkh(ϵk)=hϵhk+ϵkhϵ2khkh+ϵ[k,h]+O(ϵ2) \begin{aligned} &(e + \epsilon k) h (e - \epsilon k) \\ &= ehe + e h (- \epsilon k) + \epsilon k) h e - \epsilon k h (-\epsilon k) \\ &= h - \epsilon hk + \epsilon kh - \epsilon^2 khk \\ &\simeq h + \epsilon [k, h] + O(\epsilon^2) \end{aligned}