§ Polya Enumeration



§ Proof via Weighted Burnside Lemma



OOrb(Y)wt(O)1/GgGyFix(g)wt(y) \sum_{O \in Orb(Y)} wt(O) \equiv 1/|G| \sum_{g \in G} \sum_{y \in Fix(g)} wt(y)


§ Example: Weight enumerator for square with D4D_4 actions.