§ Projective modules in terms of universal property


§ (1): Universal property / Defn



     e
   E ->> B
   ^   ^
  f~\  | f
     \ |
       P

§ Thm: every free module is projective


§ (1 => 2): Projective as splitting of exact sequences



            pi
0 -> N -> M -> P -> 0
               ^
               | idP
               P

            pi
0 -> N -> M -> P -> 0
          ^   ^
       idP~\  | idP
            \ |
             P


§ (2 => 3): Projective as direct summand of free module


§ Splitting lemma



§ (3 => 1): Direct summand of free module implies lifting



  e
E ->>B
     ^
    f|
     P


  e
E ->>B
     ^
    f|
     P <<-- P(+)Q
         pi


  e
E ->>B <--
     ^    \f~
    f|     \
     P <<-- P(+)Q
         pi


--------g~--------
|                |
v e              |
E ->>B <--       g~
     ^    \f~    |
    f|     \     |
     P <<-- P(+)Q
         pi


§ Non example of projective module



§ Example of module that is projective but not free



§ References