§ Projective spaces and grassmanians in AG


§ Projective space


§ Grassmanian


§ G(2, 4)



§ G(2,4)G(2, 4), projectively


[a0:a1:a2:a3b0:b1:b2:b3] \begin{bmatrix} a_0 &: a_1 &: a_2 &: a_3 \\ b_0 &: b_1 &: b_2 &: b_3 \\ \end{bmatrix}


S02S13=S01S23+S03S12 S_{02} S_{13} = S_{01} S_{23} + S_{03} S_{12}


[1:0:a:b0:1:c:d] \begin{bmatrix} 1 &: 0 &: a &: b \\ 0 &: 1 &: c &: d \\ \end{bmatrix}



Si1ikSj1jk=Si1ikSj1jk. S_{i_1 \dots i_k}S_{j_1 \dots j_k} = \sum S_{i_1' \dots i_k'} S_{j_1' j_k'}.

§ Observations of G(2,4)G(2, 4)




§ Computing cohomology of G(2,5)G(2, 5)



[1:0::0:1::] \begin{bmatrix} &1 &:0 &:* &:* \\ &0 &:1 &:* &:* \end{bmatrix}


[1::0:0:0:1:] \begin{bmatrix} &1 &:* &:0 &:* \\ &0 &:0 &:1 &:* \end{bmatrix}



[1:::00:0:0:1] \begin{bmatrix} &1 &:* &:* &:0 \\ &0 &:0 &:0 &:1 \end{bmatrix}

[0:1:0:0:0:1:] \begin{bmatrix} &0 &:1 &:0 &:* \\ &0 &:0 &:1 &:* \end{bmatrix}

[0:1::00:0:0:1] \begin{bmatrix} &0 &:1 &:* &:0 \\ &0 &:0 &:0 &:1 \end{bmatrix}

[0:0:1:00:0:0:1] \begin{bmatrix} &0 &:0 &:1 &:0 \\ &0 &:0 &:0 &:1 \end{bmatrix}