§ Quantum computation without complex numbers


I recently learnt that the Toeffili and Hadamard gates are universal for quantum computation. The description of these gates involve no complex numbers. So, we can write any quantum circuit in a "complex number free" form. The caveat is that we may very well have input qubits that require complex numbers.
Even so, a large number (all?) of the basic algorithms shown in Nielsen and Chaung can be encoded in an entirely complex-number free fashion.
I don't really understand the ramifications of this, since I had the intuition that the power of quantum computation comes from the ability to express complex phases along with superposition (tensoring). However, I now have to remove the power from going from R to C in many cases. This is definitely something to ponder.