§ Uniform Boundedness Principle / Banach Steinhauss



§ Proof 1: Based on an ingenious inequality



§ Ingenious Inequality, Version 1



§ Ingenious Inequality, Version 2



supxrT(p+x)=supxrmax(T(p+x),T(px))supxrmax(T(p+x),T(px))supxrT(x)supxrT(x)=Tr \begin{aligned} &\sup_{||x|| \leq r} ||T(p + x)|| = \sup_{||x|| \leq r} \max(||T(p + x)||, ||T(p - x)||) &\sup_{||x|| \leq r} \max(||T(p + x)||, ||T(p - x)||) \geq \sup_{||x|| \leq r} ||T(x)|| &\sup_{||x|| \leq r} ||T(x)|| = ||T||r \end{aligned}


§ Proof of theorem



§ Proof 2 using Baire category


Tu=1/rT(p+ru)T(p)(triangle inequality:)1/r(T(p+ru)+T(p)(p+ru,pB(p,r))1/r(m+m) \begin{aligned} &||Tu|| \\ & = 1/r ||T (p + r u) - T(p)|| \\ & \text{(triangle inequality:)} \\ & \leq 1/r (||T(p + ru)|| + || T(p)|| & \text{($p + ru, p \in B(p, r)$)} \\ & \leq 1/r (m + m) \end{aligned}