§ Bezout's theorem



§ Intersection multiplicity i[fg](a)i[f \cap g](a)


§ f(a)0f(a) \neq 0 or g(a)0g(a) \neq 0 implies i[fg](a)0i[f \cap g](a) \equiv 0


§ f(a)=0f(a) = 0 and g(a)=0g(a) = 0 implies i[fg](a)0i[f \cap g](a) \neq 0.


§ Examples


§ Intersection cycle ( fgf \cap g)


§ Intersection number #(fg)\#(f \cap g)


§ Lemma: fg=gff \cap g = g \cap f


§ Lemma: f(g+fh)=fgf \cap (g + fh) = f \cap g


§ fghfg+fhf \cap gh \equiv f \cap g + f \cap h


§ Lemma: if f,gf, g are nonconstant and linear then #(fg)=1\#(f \cap g) = 1.


§ Lemma: homogeneous polynomial gk[p,q]g \in k[p, q] factorizes as α0pti=1nt(pαiq)\alpha_0 p^t \prod_{i=1}{n-t}(p - \alpha_i q): α00\alpha_0 \neq 0 and t>0t > 0



§ Lemma: homogeneous polynomial gk[p,q]g \in k[p, q] factorizes as α0qti=1nt(pαiq)\alpha_0 q^t \prod_{i=1}{n-t}(p - \alpha_i q) with t>0t > 0.




§ Lemma: fk[x,y,z]f \in k[x, y, z] and g[y,z]g \in [y, z] homogeneous have def(f)deg(g)def(f) deg(g) number of solutions


§ Solving for i[f(x,y,z)z]i[f(x, y, z) \cap z]



§ Solving for i[f(x,y,z)(yαiz)]i[f(x, y, z) \cap (y - \alpha_i z)]


§ Inductive step



fg=() f \cap g = ()