§ Flat functions


Define
f(x){0x<=0e1/xx>0 f(x) \equiv \begin{cases} 0 & x <= 0 \\ e^{-1/x} & x > 0 \end{cases}

This is smooth, but is badly non-analytic. Any taylor expansion around x=0x=0 is going to be identically zero. So we're going to prove that it possesses all derivatives. This implies that the derivative at zero is equal to zero, because the left derivative is always equal to zero.

=d/dy[pn(y)ey]dy/dx=pn(y)ey+pn(y)(ey)1/x2=e1/x(pn(1/x)pn(1/x))1/x2=e1/x(qn(1/x)qn(1/x))let rn+1(x)(qn(t)qn(t))t2=rn+1(1/x)e1/x \begin{aligned} & = d/dy [p_n(y) e^{-y}] dy/dx \\ & = p_n'(y) e^{-y} + p_n(y) (- e^{-y}) \cdot 1/x^2 \\ & = e^{-1/x} (p_n'(1/x) - p_n(1/x)) 1/x^2 \\ & = e^{-1/x} (q_n'(1/x) - q_n(1/x)) \\ & \text{let $r_{n+1}(x) (\equiv q_n'(t) - q_n(t))t^2$} \\ & = r_{n+1}(1/x) e^{-1/x} \end{aligned}