§ Weighted Burnside Lemma

X/G=gGFix(g) |X/G| = \sum_{g \in G} |Fix(g)|
w(X/G)=1/G(gGw(Fix(g)))=[o]X/Gw(o)=1/G(gGxFix(g)w(x)) \begin{aligned} &w(X/G) = 1/|G| (\sum_{g \in G} w(Fix(g))) \\ &=\sum_{[o] \in X/G} w(o) = 1/|G| (\sum_{g \in G} \sum_{x \in Fix(g)} w(x) ) \end{aligned}

§ Proof

y=gGxFix(g)w(x)=gGxX[gx=x]w(x)=xXgG[gx=x]w(x)=xXw(x)gG[gx=x]=xXw(x)Stab(x)=xXw(x)G/Orb(G,x)=GxXw(x)/Orb(G,x)=G[o]X/GxOw(x)/Orb(G,x)=G[o]X/GxOw(o)/Orb(G,x)=G[o]X/GxOw(o)/o=G[o]X/Gw(o)/oxO1=G[o]X/Gw(o)/oo=G[o]X/Gw(o) \begin{aligned} &y = \sum_{g \in G} \sum_{x \in Fix(g)} w(x) \\ &= \sum_{g \in G} \sum_{x \in X} [gx = x] w(x) \\ &= \sum_{x \in X} \sum_{g \in G} [gx = x] w(x) \\ &= \sum_{x \in X} w(x) \sum_{g \in G} [gx = x] \\ &= \sum_{x \in X} w(x) Stab(x) \\ &= \sum_{x \in X} w(x) |G|/|Orb(G, x) \\ &=|G| \sum_{x \in X} w(x)/|Orb(G, x) \\ &=|G| \sum_{[o] \in X/G} \sum_{x \in O} w(x) / |Orb(G, x)| \\ &=|G| \sum_{[o] \in X/G} \sum_{x \in O} w(o) / |Orb(G, x)| \\ &=|G| \sum_{[o] \in X/G} \sum_{x \in O} w(o) / |o| \\ &=|G| \sum_{[o] \in X/G} w(o) / |o| \sum_{x \in O} 1 \\ &=|G| \sum_{[o] \in X/G} w(o) / |o| \cdot |o| \\ &=|G| \sum_{[o] \in X/G} w(o)\\ \end{aligned}

§ Example, Unweighted

a b
c d
to the squares:
e     r     r^2   r^3
----|-----|-----|-----
1 2 | 4 1 | 4 2 | 4 3
3 4 | 3 2 | 3 1 | 1 2